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Abstract
Using several kinds of coordinate transformations, we standardize the
noncanonical symplectic structure of the Ablowitz–Ladik model (A–L model)
of nonlinear Schrödinger equation (NLSE), then we employ some symplectic
scheme to simulate the solitons motion and test the evolution of the discrete
invariants of the A–L model and also the conserved quantities of the original
NLSE. In comparison with a higher order non-symplectic scheme applied
directly to the A–L model, we show the overwhelming superiorities of the
symplectic method. We also compare the implementation of the same
symplectic scheme to different standardized Hamiltonian systems resulting
from different coordinate transformations, and show that the symmetric
coordinate transformation improves the numerical results obtained via the
asymmetric one, in preserving the invariants of the A–L model and the original
NLSE.

PACS numbers: 02.30.H, 02.60.J, 03.40.K

1. Introduction

We consider the nonlinear cubic Schrödinger equation (NLSE) with initial condition{
iWt + Wxx + a|W |2W = 0,

W(x, 0) = W0(x)
(1)

where x ∈ R, a > 0 is a constant and W(x, t) is a complex function. Different initial
conditions W0(x) decide different motions. For example, some kind of W0(x) with
W0(±∞) = 0 will produce bright solitons motion (see [5, 11]). It is known that NLSE
(1) has an infinite number of conserved quantities such as the charge, the momentum, the
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energy, . . . . We write the first six as follows (refer to Zakharov and Shabat [18]):

B1 =
∫ +∞

−∞
|W |2dx, B2 =

∫ +∞

−∞

{
W

dW

dx
− W

dW

dx

}
dx,

B3 =
∫ +∞

−∞

{
2

∣∣∣∣dW

dx

∣∣∣∣2

− a|W |4
}

dx, B4 =
∫ +∞

−∞

{
2

dW

dx

d2W

dx2
− 3a|W |2W dW

dx

}
dx,

B5 =
∫ +∞

−∞

{
2

∣∣∣∣d2W

dx2

∣∣∣∣2

− 6a|W |2
∣∣∣∣dW

dx

∣∣∣∣2

− a

(
d|W |2

dx

)2

+ a2|W |6
}

dx,

B6 =
∫ +∞

−∞

{
2

d2W

dx2

d3W

dx3
− 5a

∣∣∣∣dW

dx

∣∣∣∣2 d|W |2
dx

− 10a|W |2 dW

dx

d2W

dx2
+ 5a2|W |4W dW

dx

}
dx

where W is the complex conjugation of W .
For equation (1), one popular spatial discretization model is

i
dWl

dt
+

Wl+1 − 2Wl + Wl−1

h2
+

a

2
|Wl|2(Wl+1 + Wl−1) = 0, (2)

where h is the spatial step-size and Wl(t) = W(lh, t), l = . . . ,−1, 0, 1, . . . . This discrete
model is the well-known Ablowitz–Ladik model (A–L model). It is proven that the solution
of the A–L model (2) converges to that of the original continuous NLSE (1) when h −→ 0
(see [16]). Equation (2) is a completely integrable system (see [1, 5, 9, 11]), but it has a
noncanonical symplectic structure for which standard symplectic integrators are not applicable.
Via the generating functions technique (see [10, 14]) or standardization of the noncanonical
symplectic structure (see [16, 17]), people have already constructed symplectic numerical
methods for the A–L model (2).

In this paper, we construct approximations of the first six conserved quantities of the
original NLSE by using centred differences (section 2), and give an easy program for
calculation of the first six discrete invariants of the A–L model (section 3), then provide
three kinds of coordinate transformations to standardize the A–L model (section 4), and then
use a second-order symplectic scheme to simulate the solitons motion and test the evolution
of the discrete invariants of the A–L model and also the conserved quantities of the original
NLSE, for two different standardized Hamiltonians obtained via symmetric and asymmetric
coordinate transformations, in comparison with a third-order non-symplectic method applied
directly to the A–L model (sections 5 and 6), finally give some concluding remarks in
section 7.

2. Approximations of conserved quantities of NLSE

Utilizing centred difference

Wx(lh, t) = Wl+1 − Wl−1

2h
,

Wxx(lh, t) = Wl+1 − 2Wl + Wl−1

h2
,

Wxxx(lh, t) = Wl+2 − 2Wl+1 + 2Wl−1 − Wl−2

2h3
,
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we can approximate the conserved quantities B1, . . . , B6 of the original NLSE (1) as follows:

F1 = h
∑

l

WlW l, F2 =
∑

l

{WlWl+1 − Wl+1Wl},

F3 = 1

2h

∑
l

{2|Wl|2 − Wl+1Wl−1 − Wl−1Wl+1} − ah
∑

l

|Wl|4,
· · · · · · · · · · · ·

We will test the evolution of Fm = FRm +iFIm (FRm and FIm are the real part and imaginary
part of Fm respectively), 1 � m � 6 during numerical simulations in section 6.

3. Discrete invariants of Ablowitz–Ladik model

With the scaling transformations Xl =
√

ah2

2 Wl, l = . . . ,−1, 0, 1, . . . ; s = − 1
h2 t , we change

(2) into

i
dXl

ds
= Xl+1 − 2Xl + Xl−1 + |Xl|2(Xl+1 + Xl−1) = 0. (3)

Equation (3) is a typical nonlinear differential-difference equation, it possesses an infinite
number of conservation laws of motion Em

( dEm

ds
= 0

)
. Following Zakharov and Shabat

[18], these laws can be constructed systematically from a scattering problem by considering
asymptotic expansions (refer to Ablowitz and Ladik [1]).

Using some intermediate quantities g
(j)

k (j = 1, . . . , 6; k = . . . ,−1, 0, 1, . . .) (as
introduced in [1]), we give some program for fast calculation of Em (m = 1, . . . , 6) in a
recursive manner:

−Xk = g
(1)
k+2

Xk+1
, 0 = g

(2)
k+2

Xk+1
+ Xk

g
(1)
k+1

Xk

g
(1)
k+2

Xk+1
− g

(1)
k+1

Xk

,

0 = g
(3)
k+2

Xk+1
+ Xk

g
(1)
k+1

Xk

g
(2)
k+2

Xk+1
+ Xk

g
(2)
k+1

Xk

g
(1)
k+2

Xk+1
− g

(2)
k+1

Xk

,

0 = g
(4)
k+2

Xk+1
+ Xk

g
(1)
k+1

Xk

g
(3)
k+2

Xk+1
+ Xk

g
(2)
k+1

Xk

g
(2)
k+2

Xk+1
+ Xk

g
(3)
k+1

Xk

g
(1)
k+2

Xk+1
− g

(3)
k+1

Xk

,

0 = g
(5)
k+2

Xk+1
+ Xk

g
(1)
k+1

Xk

g
(4)
k+2

Xk+1
+ Xk

g
(2)
k+1

Xk

g
(3)
k+2

Xk+1
+ Xk

g
(3)
k+1

Xk

g
(2)
k+2

Xk+1
+ Xk

g
(4)
k+1

Xk

g
(1)
k+2

Xk+1
− g

(4)
k+1

Xk

,

0 = g
(6)
k+2

Xk+1
+Xk

g
(1)
k+1

Xk

g
(5)
k+2

Xk+1
+Xk

g
(2)
k+1

Xk

g
(4)
k+2

Xk+1
+Xk

g
(3)
k+1

Xk

g
(3)
k+2

Xk+1
+Xk

g
(4)
k+1

Xk

g
(2)
k+2

Xk+1
+Xk

g
(5)
k+1

Xk

g
(1)
k+2

Xk+1
− g

(5)
k+1

Xk

.

E1 = −
∑

k

g
(1)
k , E2 =

∑
k

{
1

2

[
g

(1)
k

]2 − g
(2)
k

}
,

E3 = −
∑

k

{
1

3

[
g

(1)
k

]3 − g
(2)
k g

(1)
k + g

(3)
k

}
, . . . .

We can write out their expansions as follows:

E1 =
∑

k

Xk+1Xk, E2 =
∑

k

X2
k+1X

2
k + 2

∑
k

Xk+1Xk−1Uk,

E3 =
∑

k

X3
k+1X

3
k + 3

∑
k

X2
k+1XkXk−1Uk + 3

∑
k

Xk+1XkX
2
k−1Uk + 3

∑
k

Xk+1Xk−2UkUk−1,

· · · · · · · · · · · ·
where Uk = 1 + |Xk|2.
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We will also test the evolution of Em = ERm + iEIm (ERm and EIm are the real part and
imaginary part of Em, respectively), 1 � m � 6 during numerical simulations in section 6.

4. Standardization of the A–L model

With isometric transformations Xl = Vl exp(2si) and denotation Vl = pl + iql, l =
. . . ,−1, 0, 1, . . . , we rewrite (3) as

i
dVl

ds
= (1 + |Vl|2)(Vl+1 + Vl−1) (4)

or the following general Hamiltonian system

d

ds
Z = K−1(Z)∇H(Z) (5)

where Z = [p�, q�]�, and p = [p−n, . . . , pn]�, q = [q−n, . . . , qn]�;

K−1(Z) = (kij (Z))(4n+2)×(4n+2) =
[
O2n+1 D

−D O2n+1

]
(6)

is anti-symmetric, nondegenerate and satisfies

∂kab(Z)

∂zc

+
∂kbc(Z)

∂za

+
∂kca(Z)

∂zb

= 0, a, b, c = 1, . . . , 4n + 2,

D = diag{U−n, . . . , Un}, Ul = 1 + p2
l + q2

l , l = −n, . . . , n,O2n+1 is (2n + 1) × (2n + 1) null
matrix; and

H(Z) =
n∑

l=−n

(plpl+1 + qlql+1). (7)

In the context of the Darboux theorem (see [2, 3]), (5) can be standardized. In fact for any
general Hamiltonian system of the form (5), any transformation ϕ : R

4n+2 → R
4n+2, ϕ(Y ) = Z

satisfying [
∂ϕ

∂Y

]�
K(ϕ(Y ))

[
∂ϕ

∂Y

]
= J (8)

leads to a standard Hamiltonian system

d

ds
Y = J−1∇G(Y) (9)

with G(Y) = H ◦ϕ(Y ), where Y = [u�, v�]�, u = [u−n, . . . , un]�, v = [v−n, . . . , vn]�, J =[
O2n+1 I2n+1

−I2n+1 O2n+1

]
, I2n+1 is (2n + 1) × (2n + 1) identity matrix.

We note that in (6), K−1(Z) is completely splitable and so is K(Z). Such being the
special case, we can split the system in (8) into

∂pl

∂vl

∂ql

∂ul

− ∂ql

∂vl

∂pl

∂ul

= Ul, l = −n, . . . , n. (10)

Now it becomes easy to find a coordinate transformation by solving equations in (10).
We list several solutions ([17]) as follows.

Coordinate transformation I:{
pl =

√
1 + u2

l tan
(√

1 + u2
l vl

)
,

ql = ul, l = −n, . . . , n
(11)
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with inverse 
ul = ql,

vl =
arctan

(
pl√
1+q2

l

)
√

1+q2
l

, l = −n, . . . , n

(12)

and standard Hamiltonian

G(u, v) =
n∑

l=−n

{
ulul+1 +

√
1 + u2

l

√
1 + u2

l+1 tan
(√

1 + u2
l vl

)
tan

(√
1 + u2

l+1vl+1
)}

. (13)

Coordinate transformation II:
pl =

√
exp

{
u2

l + v2
l

} − 1

u2
l + v2

l

vl,

ql =
√

exp
{
u2

l + v2
l

} − 1

u2
l + v2

l

ul, l = −n, . . . , n

(14)

with inverse 
ul =

√
ln

(
1 + p2

l + q2
l

)
p2

l + q2
l

ql,

vl =
√

ln
(
1 + p2

l + q2
l

)
p2

l + q2
l

pl, l = −n, . . . , n

(15)

and standard Hamiltonian

G(u, v) =
n∑

l=−n


√

exp
{
u2

l + v2
l

} − 1

u2
l + v2

l

√
exp

{
u2

l+1 + v2
l+1

} − 1

u2
l+1 + v2

l+1

(ulul+1 + vlvl+1)

 . (16)

Coordinate transformation III:{
pl = √

exp vl − 1 cos(2ul),

ql = √
exp vl − 1 sin(2ul), l = −n, . . . , n

(17)

with inverse 
ul = 1

2
arctan

ql

pl

,

vl = ln
(
1 + p2

l + q2
l

)
, l = −n, . . . , n

(18)

and standard Hamiltonian

G(u, v) =
n∑

l=−n

√
(exp vl − 1)(exp vl+1 − 1) cos(2[ul − ul+1]). (19)

Coordinate transformation I has been successfully used to deal with the A–L model by
Tang, Pérez-Garcı́a and Vázquez [16]. They simulated the solitons motion and tested the
evolution of the first three discrete invariants of the A–L model. As suggested by Hairer,
Lubich and Wanner [8], coordinate transformation II treats the variables more symmetrically.
This symmetry may improve the numerical results obtained by using coordinate transformation
I. Coordinate transformation III may bring some difficulty to numerical simulation, due to
the illness of ul depending on pl in (18) and the derivatives of G with respect to vl in (19),
l = −n, . . . , n.
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Figure 1. Single soliton motion computed by using scheme S2 to (4).
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Figure 2. Single soliton motion computed by using scheme S1 to (9) with (13).

5. Symplectic and non-symplectic schemes

Since the A–L model (2) has already been changed into a standard Hamiltonian system, we can
use the usual symplectic schemes (see [4, 6, 8, 13] for an introduction to symplectic numerical
methods for Hamiltonian dynamics) straightforward. In comparison with the symplectic
methods, we will also use a non-symplectic scheme directly to the A–L model.

Scheme 1 (S1): the midpoint rule.

Z̃ = Z + τf

(
Z̃ + Z

2

)
(20)
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Figure 3. Propagation of two solitons computed by using scheme S2 to (4).
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Figure 4. Propagation of two solitons computed by using scheme S1 to (9) with (13).

where τ is the temporal step-size. The scheme S1 is of second order, revertible in τ . And it
is symplectic for standard Hamiltonian systems (f = J−1∇H), and preserves any quadratic
invariants of the Hamiltonian H (see [7]).

Scheme 2 (S2): third-order scheme.
Z̃ = Z +

τ

2
[f (K1) + f (K2)],

K1 = Z +
τ

6
[3f (K1) −

√
3f (K2)],

K2 = Z +
τ

6
[
√

3f (K1) + 3f (K2)].

(21)

This Runge–Kutta scheme is of third order but non-symplectic for standard Hamiltonian
systems.
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Figure 5. Evolution of ER1, EI6, FR1 and FI6 obtained by using scheme S2 to (4).

6. Numerical experiments

In this section, we will present the numerical simulation results performed in order to test the
accuracy of the symplectic scheme and its conservativity of invariants or approximations in
comparison with the non-symplectic scheme, and show the differences between the numerical
results of the same symplectic scheme applied to different standardized Hamiltonians.

The following initial conditions are used.

Condition 1: one-soliton solution.

W(x, 0) = 2η

√
2

a
e2χxisech[2η(x − x1)]. (22)

Condition 2: two-soliton solution.

W(x, 0) = 2η1

√
2

a
e2χ1xisech[2η1(x − xa)] + 2η2

√
2

a
e2χ2xisech[2η2(x − xb)]. (23)

Condition 3: three-soliton solution.

W(x, 0) = sech[x − x3]. (24)

Unless the contrary is stated the standard value for the nonlinear constant is a = 2.0.
We will apply the symplectic method S1 to (9) with Hamiltonian functions (13), (16) or

(19), and the non-symplectic scheme S2 to (4).



Symplectic methods for the Ablowitz–Ladik discrete nonlinear Schrödinger equation 2433

0 20 40 60
−5

−3

−1

1

3

time

er
r(

E
R

1)*
10

3

0 20 40 60
−20

0

20

40

time

er
r(

E
I 6)*

10
3

0 20 40 60
−30

−10

10

30

40

time

er
r(

F
R

1)*
10

3

0 20 40 60
0

1

2

3

4

time

er
r(

F
I 6)*

10

Figure 6. Evolution of ER1, EI6, FR1 and FI6 obtained by using scheme S1 to (9) with (13).

In the following, we will call err(A)(t) = A(t) − A(0) for any variable A.
Initial data (22) are the usual 1-soliton solution which are integrated without problems by

many numerical methods. We present here the results of an integration with η = 0.5, χ =
0.5, x1 = 0.0 over the spatial interval x ∈ [−750, 750] and temporal intervals 0 � t � 100
for symplectic and non-symplectic method, with same integration parameters:

h = 0.3, τ = 0.02.

In figures 1 and 2, we find that the symplectic scheme can simulate the single soliton
motion successfully, and the non-symplectic method cannot do even in a shorter interval
0 � t � 30.

The expression in (23) is initial data for a pair of solitons with different amplitudes and
velocities and it is appropriate for the simulation of soliton collision (assuming that the soliton
centres are initially set far away from each other). We have studied the following set of
parameters η1 = η2 = 0.5, χ1 = 0.25, χ2 = 0.025, xa = 30.0, xb = 0.0 and

h = 0.3, τ = 0.02.

Figures 3 and 4 show again the advantage of symplectic methods in preserving the motions of
two solitons.

Since the evolution of other ERj ,EIk, FRl and FIm is very similar, we plot only
err(ER1), err(EI6), err(FR1) and err(F I6) in figures 5, 6, 7 respectively. Figures 6 and 7
show that the numerical results for the invariants of the A–L model and the approximations
to the conserved quantities of the original NLSE obtained by using symplectic scheme S1
always undulate in small neighbuorhoods of the standard values respectively, while figure 5
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Figure 7. Evolution of ER1, EI6, FR1 and FI6 obtained by using scheme S1 to (9) with (16).

shows that the corresponding numerical results obtained by using non-symplectic scheme S2
degenerate with time. These phenomena are in good agreement with the solitons motion
plotted in figures 3 and 4, respectively.

Though the behaviour of invariants and approximations presented in both figures 6 and 7
is qualitatively good, one still easily finds the difference between these two figures. The plots
in figure 7 seem to be much more ‘clean’ than those in figure 6. In this sense one may say that
it is the symmetry of coordinate transformation II (for simplicity, C–T II) that improves the
computation results obtained by using coordinate transformation I (for simplicity, C–T I). On
the other hand, We need to point out that the implementation procedure for C–T II is more
complicated than that for C–T I, because of the appearance of exponential function.

Numerical experiments show that the Hamiltonian system (9) given by (19) is not
numerically integrable by the schemes S1 or other higher order symplectic methods. Running
of the Fortran program can last only several temporal steps no matter how small the step-size
is chosen, because of the appearance of ‘DOMAIN error in sqrt’.

Numerical experiments show that the numerical results obtained by using the non-
symplectic scheme S2 to the Hamiltonian system (9) given by (13) or by (16) are very
similar to those obtained by using S2 directly to (4); and obviously the simulation process of
the former is more time-consuming than that of the latter.

Finally, we have used the initial data (24), which is usually considered to be a more
difficult ‘quality’ test for numerical schemes because of the appearance of large spatial and
temporal gradients in the solution. For a = 2N2(N = 2, 3, . . .) Miles has shown that (24)
corresponds to a bounded state of N solitons [12]. For the case a = 18, we found that for
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Figure 8. Propagation of three-soliton bounded state computed by using scheme S2 to (4).
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Figure 9. Propagation of three-soliton bounded state computed by using scheme S1 to (9) with
(13).

h � 0.06667, with some proper temporal step-size which makes simple iteration practicable,
the second-order symplectic scheme S1 represents accurately the solution without problems
(figure 9 where x3 = 0.0). This is a very good result and provides convergence to the correct
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solution with a relatively rough spatial grid, while the third-order non-symplectic scheme S2
studied for comparison fails to do so (figure 8).

7. Concluding remarks

The Ablowitz–Ladik model of the nonlinear Schrödinger equation is a completely integrable
general Hamiltonian system which can be standardized via coordinate transformations. When a
suitable coordinate transformation is chosen, the symplectic method applied to the standardized
Hamiltonian system has overwhelming superiorities over the non-symplectic scheme applied
directly to the A–L model, such as long-term tracking of solitons motion, long-term preserving
of discrete invariants of the A–L model and also the conserved quantities of the original NLSE
up to a very small error. The difference between the numerical results obtained via different
coordinate transformations shows the importance of symmetry for choosing a coordinate
transformation in our procedure.

On the other hand, the main disadvantage of this method (Ablowitz–Ladik+coordinate
transformation+symplectic integration, simply, ALCTSI) is that due to the complexity of the
standardized Hamiltonian, we have to use iterative methods to solve the highly nonlinear
system. This fact makes the implementation process time-consuming when compared with
spectral methods [15] or linearly implicit finite difference schemes [19] which are commonly
used to integrate the NLSE. When noncritical problems are considered, it is a thing to choose
a scheme; but for more difficult or complicated problems, the additional guaranties provided
by ALCTSI may be of high interest, and in any case this method provides a safe way to check
the results of the faster but less accurate methods when typical physical problems are to be
studied.
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